Empirical Models of
Amino Acid Substitution
Description
This web page provides a complete list of amino acid replacement matrices for model-based sequence evolution analyses.
For each amino acid evolutionary model, equilibrium amino-acid frequencies and exchangeability matrix are available in PAML format.
The complete reference list is also provided, as well as the source of the data.
[last update: 22.09.30]
Amino Acid Replacement Matrices
-
Dayhoff GENERAL
Dayhoff MO, Schwartz RM, Orcutt BC (1978) A model of evolutionary change in proteins.
In: Dayhoff MO (ed.), Atlas of Protein Sequence and Structure, National Biomedical Research Foundation, Washington DC, Vol. 5, pp. 345–352.
[pdf]
data source: https://www.ebi.ac.uk/goldman-srv/dayhoff/dayhoff-paml.dat
-
BLOSUM62 GENERAL
Henikoff S, Henikoff JG (1992) Amino acid substitution matrices from protein blocks.
Proceedings of the National Academy of Sciences of the USA, 89:10915–10919.
doi:10.1073/pnas.89.22.10915
data source: https://raw.githubusercontent.com/NBISweden/MrBayes/master/src/model.c (/* Blosum62 */)
-
JTT GENERAL
Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences.
Computer Applications in the Biosciences, 8:275–282.
doi:10.1093/bioinformatics/8.3.275
data source: https://raw.githubusercontent.com/NBISweden/MrBayes/master/src/model.c (/* jones */)
-
mtREV MITOCHONDRION
Adachi J, Hasegawa M (1996) Model of amino acid substitution in proteins encoded by mitochondrial DNA.
Journal of Molecular Evolution, 42:459–468.
doi:10.1007/BF02498640
data source: https://raw.githubusercontent.com/NBISweden/MrBayes/master/src/model.c (/* mtrev24 */)
-
mtMam MITOCHONDRION
Yang Z, Nielsen R, Hasegawa M (1998) Models of amino acid substitution and applications to mitochondrial protein evolution.
Molecular Biology and Evolution, 15:1600–1611.
doi:10.1093/oxfordjournals.molbev.a025888
data source: https://raw.githubusercontent.com/NBISweden/MrBayes/master/src/model.c (/* mtmam */)
-
cpREV PLASTID
Adachi J, Waddell PJ, Martin W, Hasegawa M (2000) Plastid genome phylogeny and a model of amino acid substitution for proteins encoded by chloroplast DNA.
Journal of Molecular Evolution, 50:348–358.
doi:10.1007/s002399910038
data source: https://github.com/xflouris/libpll-2/blob/master/src/maps.c (pll_aa_rates_cprev)
-
VT GENERAL
Muller T, Vingron M (2000) Modeling amino acid replacement.
Journal of Computational Biology, 7:761–776.
doi:10.1089/10665270050514918
data source: https://github.com/stephaneguindon/phyml/blob/master/src/init.c (Init_Qmat_VT)
-
WAG GENERAL
Whelan S, Goldman N (2001) A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach.
Molecular Biology and Evolution, 18:691–699.
doi:10.1093/oxfordjournals.molbev.a003851
data source: https://www.ebi.ac.uk/goldman-srv/WAG/wag.dat
-
WAG* GENERAL
Whelan S, Goldman N (2001) A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach.
Molecular Biology and Evolution, 18:691–699.
doi:10.1093/oxfordjournals.molbev.a003851
data source: https://www.ebi.ac.uk/goldman-srv/WAG/wagstar.dat
-
rtREV RETROVIRUS
Dimmic MW, Rest JS, Mindell DP, Goldstein RA (2002) rtREV: an amino acid substitution matrix for inference of retrovirus and reverse transcriptase phylogeny.
Journal of Molecular Evolution, 55:65–73.
doi:10.1007/s00239-001-2304-y
data source: https://link.springer.com/content/pdf/10.1007/s00239-001-2304-y.pdf
-
PMB GENERAL
Veerassamy S, Smith A, Tillier ER (2003) A transition probability model for amino acid substitutions from blocks.
Journal of Computational Biology, 10:997–1010.
doi:10.1089/106652703322756195
data source: wwwlabs.uhnresearch.ca/tillier/dependent_files/pmb/pmb.dat
-
DCMut-Dayhoff GENERAL
Kosiol C, Goldman N (2005) Different versions of the Dayhoff rate matrix.
Molecular Biology and Evolution, 22:193–199.
doi:10.1093/molbev/msi005
data source: https://www.ebi.ac.uk/goldman-srv/dayhoff/dayhoff-dcmut.dat
-
DCMut-JTT GENERAL
Kosiol C, Goldman N (2005) Different versions of the Dayhoff rate matrix.
Molecular Biology and Evolution, 22:193–199.
doi:10.1093/molbev/msi005
data source: https://www.ebi.ac.uk/goldman-srv/dayhoff/jtt-dcmut.dat
-
HIVb HUMAN IMMUNODEFICIENCY VIRUS
Nickle DC, Heath L, Jensen MA, Gilbert PB, Mullins JI, Kosakovsky Pond SL (2007) HIV-specific probabilistic models of protein evolution.
PLoS ONE, 2:e503.
doi:10.1371/journal.pone.0000503
data source: https://github.com/stephaneguindon/phyml/blob/master/src/init.c (Init_Qmat_HIVb)
-
HIVw HUMAN IMMUNODEFICIENCY VIRUS
Nickle DC, Heath L, Jensen MA, Gilbert PB, Mullins JI, Kosakovsky Pond SL (2007) HIV-specific probabilistic models of protein evolution.
PLoS ONE, 2:e503.
doi:10.1371/journal.pone.0000503
data source: https://github.com/stephaneguindon/phyml/blob/master/src/init.c (Init_Qmat_HIVw)
-
MtArt ARTHROPODA MITOCHONDRION
Abascal F, Posada D, Zardoya R (2007) MtArt: a new model of amino acid replacement for Arthropoda.
Molecular Biology and Evolution, 24:1–5.
doi:10.1093/molbev/msl136
data source: https://github.com/xflouris/libpll-2/blob/master/src/maps.c (pll_aa_rates_mtart)
-
LG GENERAL
Le SQ, Gascuel O (2008) An improved general amino acid replacement matrix.
Molecular Biology and Evolution, 25:1307–1320.
doi:10.1093/molbev/msn067
data source: http://www.atgc-montpellier.fr/download/datasets/models/lg_LG.PAML.txt
-
MtZoa MITOCHONDRION
Rota-Stabelli O, Yang Z, Telford MJ (2009) MtZoa: a general mitochondrial amino acid substitutions model for animal evolutionary studies.
Molecular Phylogenetics and Evolution, 52:268–272.
doi:10.1016/j.ympev.2009.01.011
data source: https://ars.els-cdn.com/content/image/1-s2.0-S1055790309000165-mmc1.txt
-
cpREV64 PLASTID
Zhong B, Yonezawa T, Zhong Y, Hasegawa M (2010) The Position of Gnetales among seed plants: overcoming pitfalls of chloroplast phylogenomics.
Molecular Biology and Evolution, 27:2855–2863.
doi:10.1093/molbev/msq170
data source: https://academic.oup.com/mbe/article/27/12/2855/1074835#supplementary-data
-
FLU INFLUENZA VIRUS
Dang CC, Le SQ, Gascuel O, Le VS (2010) FLU, an amino acid substitution model for influenza proteins.
BMC Evolutionary Biology, 10:99.
doi:10.1186/1471-2148-10-99
data source: ftp://ftp.sanger.ac.uk/pub/1000genomes/lsq/FLU/Flu_All_it2.txt_PAML.txt
-
gcpREV GREEN PLANT CHLOROPLAST
Cox CJ, Foster PG (2013) A 20-state empirical amino-acid substitution model for green plant chloroplasts.
Molecular Phylogenetics and Evolution, 68:218–220.
doi:10.1016/j.ympev.2013.03.030
data source: https://github.com/pgfoster/p4-phylogenetics/blob/master/Misc/gcpREV_model/gcpREV.dat
-
stmtREV LAND PLANT MITOCHONDRION
Liu Y, Cox CJ, Wang W, Goffinet B (2014) Mitochondrial phylogenomics of early land plants: mitigating the effects of saturation, compositional heterogeneity, and codon-usage bias.
Systematic Biology, 63:862–878.
doi:10.1093/sysbio/syu049
data source: https://datadryad.org/bitstream/handle/10255/dryad.58788/stmtREV_model.txt
-
AB ANTIBODY
Mirsky A, Kazandjian L, Anisimova M (2015) Antibody-specific model of amino acid substitution for immunological inferences from alignments of antibody sequences.
Molecular Biology and Evolution, 32:806–819.
doi:10.1093/molbev/msu340
data source: https://academic.oup.com/mbe/article/32/3/806/980410#supplementary-data
- mtInv INVERTEBRATE MITOCHONDRION
Le VS, Dang CC, Le SQ (2017) Improved mitochondrial amino acid substitution models for metazoan evolutionary studies.
BMC Evolutionary Biology, 17:136.
doi:10.1186/s12862-017-0987-y
data source: https://github.com/Vinhbio/mt_metazoan_models/tree/master/mt_metazoan_models_from_all_data
-
mtMet METAZOAN MITOCHONDRION
Le VS, Dang CC, Le SQ (2017) Improved mitochondrial amino acid substitution models for metazoan evolutionary studies.
BMC Evolutionary Biology, 17:136.
doi:10.1186/s12862-017-0987-y
data source: https://github.com/Vinhbio/mt_metazoan_models/tree/master/mt_metazoan_models_from_all_data
-
mtVer VERTEBRATE MITOCHONDRION
Le VS, Dang CC, Le SQ (2017) Improved mitochondrial amino acid substitution models for metazoan evolutionary studies.
BMC Evolutionary Biology, 17:136.
doi:10.1186/s12862-017-0987-y
data source: https://github.com/Vinhbio/mt_metazoan_models/tree/master/mt_metazoan_models_from_all_data
-
DEN DENGUE VIRUS
Le TK, Dang CC, Le SV (2018) Building a specific amino acid substitution model for Dengue viruses.
In: Phuong TM, Nguyen ML (eds) Proceedings of 10th International Conference on Knowledge and Systems Engineering (KSE 2018), Ho Chi Minh City, Vietnam, pp. 242–246.
doi:10.1109/KSE.2018.8573341
data source: https://github.com/xflouris/libpll-2/blob/dev/src/maps.c (pll_aa_rates_den)
-
mtOrt ORTHOPTERA MITOCHONDRION
Chang H, Nie Y, Zhang N, Zhang X, Sun H, Mao Y, Qiu Z, Huang Y (2020) MtOrt: an empirical mitochondrial amino acid substitution model for evolutionary studies of Orthoptera insects.
BMC Ecology and Evolution, 20:57.
doi:10.1186/s12862-020-01623-6
data source: https://static-content.springer.com/esm/art%3A10.1186%2Fs12862-020-01623-6/MediaObjects/12862_2020_1623_MOESM2_ESM.txt (model mtOrt)
-
FLAVI FLAVIVIRUS
Le TK, Vinh LS (2020) FLAVI: An Amino Acid Substitution Model for Flaviviruses.
Journal of Molecular Evolution, 88:445-452.
doi:10.1007/s00239-020-09943-3
data source: https://github.com/thulekm/flavi/blob/master/FLAVI.PAML
-
Q.LG GENERAL
Minh BQ, Dang CC, Le SV, Lanfear R (2021) QMaker: Fast and Accurate Method to Estimate Empirical Models of Protein Evolution.
Systematic Biology, syab010.
doi:10.1093/sysbio/syab010
data source: https://figshare.com/articles/dataset/QMaker-datasets_zip/9768101?file=25875906 (file Q.LG)
-
Q.pfam GENERAL
Minh BQ, Dang CC, Le SV, Lanfear R (2021) QMaker: Fast and Accurate Method to Estimate Empirical Models of Protein Evolution.
Systematic Biology, syab010.
doi:10.1093/sysbio/syab010
data source: https://figshare.com/articles/dataset/QMaker-datasets_zip/9768101?file=25875906 (file Q.pfam)
-
Q.bird BIRD
Minh BQ, Dang CC, Le SV, Lanfear R (2021) QMaker: Fast and Accurate Method to Estimate Empirical Models of Protein Evolution.
Systematic Biology, syab010.
doi:10.1093/sysbio/syab010
data source: https://figshare.com/articles/dataset/QMaker-datasets_zip/9768101?file=25875906 (file Q.bird)
-
Q.insect INSECT
Minh BQ, Dang CC, Le SV, Lanfear R (2021) QMaker: Fast and Accurate Method to Estimate Empirical Models of Protein Evolution.
Systematic Biology, syab010.
doi:10.1093/sysbio/syab010
data source: https://figshare.com/articles/dataset/QMaker-datasets_zip/9768101?file=25875906 (file Q.insect)
-
Q.mammal MAMMAL
Minh BQ, Dang CC, Le SV, Lanfear R (2021) QMaker: Fast and Accurate Method to Estimate Empirical Models of Protein Evolution.
Systematic Biology, syab010.
doi:10.1093/sysbio/syab010
data source: https://figshare.com/articles/dataset/QMaker-datasets_zip/9768101?file=25875906 (file Q.mammal)
-
Q.plant GREEN PLANT
Minh BQ, Dang CC, Le SV, Lanfear R (2021) QMaker: Fast and Accurate Method to Estimate Empirical Models of Protein Evolution.
Systematic Biology, syab010.
doi:10.1093/sysbio/syab010
data source: https://figshare.com/articles/dataset/QMaker-datasets_zip/9768101?file=25875906 (file Q.plant)
-
Q.yeast YEAST
Minh BQ, Dang CC, Le SV, Lanfear R (2021) QMaker: Fast and Accurate Method to Estimate Empirical Models of Protein Evolution.
Systematic Biology, syab010.
doi:10.1093/sysbio/syab010
data source: https://figshare.com/articles/dataset/QMaker-datasets_zip/9768101?file=25875906 (file Q.yeast)
-
HIVin HIV INTEGRASE
Del Amparo R, Arenas M (2022) HIV Protease and Integrase Empirical Substitution Models of Evolution: Protein-Specific Models Outperform Generalist Models.
Genes, 13:61.
doi:10.3390/genes13010061
data source: https://zenodo.org/record/5763867 (file HIVin.dat in Substitution models.zip)
-
HIVpr HIV PROTEASE
Del Amparo R, Arenas M (2022) HIV Protease and Integrase Empirical Substitution Models of Evolution: Protein-Specific Models Outperform Generalist Models.
Genes, 13:61.
doi:10.3390/genes13010061
data source: https://zenodo.org/record/5763867 (file HIVpr.dat in Substitution models.zip)
-
VIRin VIRUS INTEGRASE
Del Amparo R, Arenas M (2022) HIV Protease and Integrase Empirical Substitution Models of Evolution: Protein-Specific Models Outperform Generalist Models.
Genes, 13:61.
doi:10.3390/genes13010061
data source: https://zenodo.org/record/5763867 (file VIRin.dat in Substitution models.zip)
-
VIRpr VIRUS PROTEASE
Del Amparo R, Arenas M (2022) HIV Protease and Integrase Empirical Substitution Models of Evolution: Protein-Specific Models Outperform Generalist Models.
Genes, 13:61.
doi:10.3390/genes13010061
data source: https://zenodo.org/record/5763867 (file VIRpr.dat in Substitution models.zip)